Fiber assembly by the chaperone-usher pathway.
نویسندگان
چکیده
Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multi-subunit fibers essential for virulence. The periplasmic chaperone facilitates the initial folding of fiber subunits but then traps them in activated folding transition states. Chaperone dissociation releases the folding energy that drives subunit incorporation into the fiber, which grows through a pore formed by the outer-membrane usher.
منابع مشابه
Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway
Gram-negative pathogens commonly exhibit adhesive pili on their surfaces that mediate specific attachment to the host. A major class of pili is assembled via the chaperone/usher pathway. Here, the structural basis for pilus fiber assembly and secretion performed by the outer membrane assembly platform--the usher--is revealed by the crystal structure of the translocation domain of the P pilus us...
متن کاملChaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly.
The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a c...
متن کاملChaperone/Usher Machinery: a Catalyst of Virulence Organelle Assembly
Many virulence organelles of Gram-negative bacterial pathogens are assembled via the periplasmic chaperone/usher (CU) pathway. The assembly process is a complex task, involving secretion of organelle subunits via the two membranes and periplasm, subunit folding and assembly. In this thesis, the mechanism of the organelle subunit trafficking and assembly via the CU pathway was investigated at di...
متن کاملThe usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events.
Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understoo...
متن کاملBacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis.
Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1694 1-3 شماره
صفحات -
تاریخ انتشار 2004